An effective and accessible cell configuration for testing rechargeable zinc-based alkaline batteries
نویسندگان
چکیده
Rechargeable aqueous zinc-air batteries have received much attention due to their intrinsic safety, high theoretical volumetric energy density (6134 Wh/L), and low cost. However, zinc anodes suffer from severe hydrogen evolution reaction (HER) in alkaline electrolytes, which are kinetically favorable for air cathodes. Through an electrochemical cell–gas chromatography setup, we quantitatively identified that 99% of the capacity loss on anode was caused by HER. Most previous research has focused material design suppress HER, while less been paid device. Here demonstrate testing device apparent effect HER electrolytes. Stainless-steel coin cells, as common devices used laboratories, accelerate synergistic effects galvanic corrosion a activity. We designed effective accessible cell configuration zinc-based batteries, minimizes demonstrates higher Coulombic efficiency longer cycling life than stainless-steel cells. Minimized self-discharge Zn were visualized through operando optical microscopy. Specifically, Ni–Zn battery with our achieved stable long-term 816 cycles compared ~100 cell. The shown here can be directly or modified future batteries.
منابع مشابه
Sulfone-based electrolytes for aluminium rechargeable batteries.
Electrolyte is a key material for success in the research and development of next-generation rechargeable batteries. Aluminium rechargeable batteries that use aluminium (Al) metals as anode materials are attractive candidates for next-generation batteries, though they have not been developed yet due to the lack of practically useful electrolytes. Here we present, for the first time, non-corrosi...
متن کاملRechargeable Batteries
Purpose: The goal of our battery research is to produce an all solid-state, high performance rechargeable cell. Moving to a liquid-free polymer electrolyte eliminates the need for heavy casing material, thus the energy density is increased significantly. In addition, the absence of solvent additives leads to better thermal and chemical stability, broadening the range of applications for which t...
متن کاملNickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries
متن کامل
High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries
0.1016/j.nanoen.2 lsevier Ltd. All rig thors. uthor. : [email protected] Abstract Development of efficient bifunctional electrocatalysts from earth abundant elements, simultaneously active for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), remains to be a grand challenge for electrocatalysis. Herein we firstly synthesized a new type of bifunctional catalyst (NCNT/CoxMn1 xO)...
متن کاملElucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries.
The intercalation mechanism of zinc ions into 2 × 2 tunnels of an α-MnO2 cathode for rechargeable zinc batteries was revealed. It involves a series of single and two-phase reaction steps and produces buserite, a layered compound with an interlayer spacing of 11 Å as a discharge product.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Power Sources
سال: 2021
ISSN: ['1873-2755', '0378-7753']
DOI: https://doi.org/10.1016/j.jpowsour.2021.229547